Transformers on Clause-Level Morphology

KUIS AI Submission for the 1st Shared Task on Multilingual Clause-level Morphology

Emre Can Acikgoz December 8th, 2022

Personal

2022-2024

MSc at Koc University in CS and Fellow at KUIS AI Center Advisor: Deniz Yuret Topic: LLMs, Multimodal Learning, Grounded Language Learning

2018-2022

BSc at Koc University major in EEE. Undergraduate Advisor: Deniz Yuret Topic: Supervised/Unsupervised Morphological Analysis

Tilek Chubakov, VS

Muge Kural, PhD

Gozde Gul Sahin, Asst. Prof

Deniz Yuret, Prof

Motivation The Reason Why?

- Language generalization problems
- Methods in morphological tasks sometimes be "old-fashioned"
- The era of Language Models
- Multilingual/Monolingual models

Shared-Task 2022 (MRL): Multilingual Clause-level Morphology

- Task1: Inflection
- Task2: Reinflection

I will give him to her + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) We don't give you to them IND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG

• Task3: Analysis

Languages: Ger, Eng, Fra, Heb/Heb-unvoc, Rus, Swa, Spa, Tur

[1] Omer Goldman and Reut Tsarfaty. 2022. Morphology without borders: Clause-level morphological annotation.

I will give him to her _____ give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

Shared-Task **Task1: Inflection**

- Task: Inflection
- Metric: Edit Distance (ED)
- Method: Vanilla Transformer [2] + Data Hallucination [1]
- Tricks: Batch Size 400 [3], layer normalization before self-attention and feed-forward layers [3]

[1] Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morphological inflection. [2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. [3] Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction.

give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) - I will give him to her

System	Inflection
Transformer Baseline	3.278
mT5 Baseline	2.577
KUIS AI	0.292

Figure: Task1 Averaged Results

Shared-Task **Data Hallucination**

- Good choice for low-resource languages.
- Add noise to the stem parts.
- Increase the training set with the hallucinated samples.

celebrate + IND;PRS;NOM(1,PL);NEG;ACC(3,SG,MASC) - we don't celebrate him cjuexua te + IND;PRS;NOM(1,PL)NEG;ACC(3,SG,MASC) we don't cjuexuate him.

[1] Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morphological inflection.

Example of Hallucinated Data (English)

cevCp vDOme k + NEC;PST;NOM(3,SG);NEG;Q;DAT(3,PL) - onlara cevCp vDOmemeli miydi? Example of Hallucinated Data (Turkish)

Shared-Task Task2: Reinflection

Task: Reinflection

I will give him to her
HND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(HIND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG

- Metric: Edit Distance (ED)
- Method: Vanilla Transformer [1]
- **Tricks:** Batch Size 400 [2], layer normali before self-attention and feed-fo layers [2]. We didn't use the input features.

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. [2] Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction.

	System	Reinflecti
	Transformer Baseline	4.642
ization	mT5 Baseline	2.826
prward	KUIS AI	0.705
ut clause		

Figure: Task2 Averaged Results

Shared-Task

Task3: Analysis

- Task: Analysis

- Metric: F1 Score
- Method: mGPT-based prefix tuning [1], [2]

Input (clauses) **Output** (lemma and features)

Figure: Prefix Tuning example for Task3

[1] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. [2] Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and Tatiana Shavrina. 2022. mgpt: Few-shot learners go multilingual.

I will give him to her _____ give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

Figure: Task3 Averaged Results

Results Submitted Detailed Results Table

	Task1: Inflection			Task2: Reinflection			Task3: Analysis			
Model	Transformer + D.A.			Transformer			Prefix Tuning			
Metrics	F1↑	EM↑	ED↓	F 1↑	EM↑	ED↓	F1↑	EM↑	ED↓	
Deu	97.71	91.80	0.241	92.40	66.50	0.788	95.89	83.40	0.991	
Eng	98.02	88.90	0.221	95.42	72.30	0.477	99.61	98.50	0.064	
Fra	98.59	93.20	0.124	92.64	68.30	0.758	95.63	81.90	0.933	
Heb	97.73	89.80	0.550	94.00	83.30	0.796	92.84	73.50	1.322	
Heb-Unvoc	97.96	94.20	0.113	86.70	57.70	1.002	82.09	36.20	2.044	
Rus	97.57	87.70	0.828	97.29	84.90	0.854	97.51	88.60	3.252	
Swa	99.72	99.61	0.019	92.05	84.47	0.182	90.51	62.63	3.114	
Spa	98.79	92.00	0.199	96.42	77.60	0.480	98.11	89.40	0.560	
Tur	97.50	89.80	0.333	95.36	84.70	0.593	95.36	84.70	0.593	
Average	98.18	91.89	0.292	93.14	74.72	0.705	94.17	77.65	1.430	

Figure: D.A. indicates Data Augmentation

Number of Tokens:

- Eng: ~52B
- Deu: ~50B
- Spa: ~30B
- Heb: ~0.69B

Conclusion **Summary and Future Work**

Summary

- No single method achieves best results in all tasks.
- Recent NLG methods provide promising results on morphological tasks.
- 0

Future work

- Hallucination for reinflection and analysis tasks.
- Github Code: https://github.com/emrecanacikgoz/mrl2022

Data hallucination, multilingual models, and lightweight tuning methods are the game changers.

• Prefix-Tuning in all types of architectures (autoencoding, autoregressive, seq2seq).

Appendix **Transformer Architecture**

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. [2] Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction.

Appendix **Prefix-Tuning**

[1] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. [2] Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and Tatiana Shavrina. 2022. mgpt: Few-shot learners go multilingual.

Target

I will give him to her. <SEP> give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

[Prefix; x; y]

Figure: Auto-regressive Prefix-Tuning set-up

Appendix mGPT Language Corpus

Ossetian, Ossetic, Portuguese, Russian, Swedish, Tamil, Tajik, Turkmen, Tatar, Ukrainian, Uzbek, Kalmyk, Chinese **Figure:** 60 different languages

[2] Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and Tatiana Shavrina. 2022. mgpt: Few-shot learners go multilingual.

Afrikaans, Azerbaijani, Belarusian, Bengali, Chuvash, German, English, Basque, Finnish, Hebrew (modern), Hungarian, Indonesian, Japanese, Kazakh, Kirghiz, Kyrgyz, Latvian, Mongolian, Malay, Dutch, Polish, Romanian, Moldavan, Yakut, Swahili, Telugu, Thai, Turkish, Tuvinian, Urdu, Vietnamese, Yoruba, Arabic, Bashkir, Bulgarian, Buriat, Danish, Greek, Modern, Spanish; Castilian, Persian, French, Hindi, Armenian, Italian, Georgian, Korean, Lithuanian, Malayalam, Marathi, Burmese,

Appendix mGPT Language Corpus

[2] Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and Tatiana Shavrina. 2022. mgpt: Few-shot learners go multilingual.

Appendix Extra Results

Inflection	De	eu	Eng		Fra		Heb		Rus		Tur	
Models	EM	ED	EM									
Т	80.8%	0.645	92.1%	0.129	92.4%	0.270	92.5%	0.488	92.8%	0.763	95.2%	(
T + H(N=1000)	89.8%	0.467	96.6%	0.132	94.0%	0.273	93.6%	0.289	93.6%	0.709	99.4%	(
T + H(N=5000)	92.0%	0.422	97.0%	0.113	95.3%	0.121	96.0%	0.112	93.8%	0.907	99.3%	(
T + H(N=10000)	89.7%	0.474	96.8%	0.130	94.6%	0.159	95.2%	0.181	93.7%	0.899	98.7%	(

Figure 1: Results for varying number of hallucinated data for Task1

	Eng						
Models	EM	ED					
GPT-2	$83.5\% \pm 0.007$	0.660 ± 0.026					
T5	90.4% ± 0.016	0.316 ± 0.073					
mGPT	93.8% ± 0.011	0.121 ± 0.070					

Figure 2: Results for monolingual vs. multilingual for Task1

[1] Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morphological inflection.
 [2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
 [3] Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction.

ED 0.083 **0.010** 0.018 0.270