Transformers on Clause-Level Morphology

KUIS AI Submission for the 1st Shared Task on Multilingual Clause-level Morphology

KOC UNIVERSITY

Personal

2022-2024
MSc at Koc University in CS and Fellow at KUIS AI Center
Advisor: Deniz Yuret
Topic: LLMs, Multimodal Learning, Grounded Language Learning
2018-2022
BSc at Koc University major in EEE.
Undergraduate Advisor: Deniz Yuret
Topic: Supervised/Unsupervised Morphological Analysis

Tilek Chubakov,

Muge Kural, PhD

Gozde Gul Sahin, Asst. Prof

Deniz Yuret,
Prof

Motivation

The Reason Why?

- Language generalization problems
- Methods in morphological tasks sometimes be "old-fashioned"
- The era of Language Models
- Multilingual/Monolingual models

Shared-Task
 2022 (MRL): Multilingual Clause-level Morphology

- Task1: Inflection

```
give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) \longrightarrow I will give him to her
```

- Task2: Reinflection

I will give him to her

+ IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) \longrightarrow We don't give you to them
+ IND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG
- Task3: Analysis

I will give him to her \longrightarrow give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

- Languages: Ger, Eng, Fra, Heb/Heb-unvoc, Rus, Swa, Spa, Tur

Shared-Task

Task1: Inflection

- Task: Inflection
give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) \longrightarrow I will give him to her
- Metric: Edit Distance (ED)
- Method: Vanilla Transformer [2] + Data Hallucination [1]
- Tricks: Batch Size 400 [3], layer normalization before self-attention and feed-forward layers [3]

System	Inflection
Transformer Baseline	3.278
mT5 Baseline	2.577
KUIS AI	$\mathbf{0 . 2 9 2}$

Figure: Task1 Averaged Results

Shared-Task

Data Hallucination

- Good choice for low-resource languages.
- Add noise to the stem parts.
- Increase the training set with the hallucinated samples.

$$
\begin{array}{r}
\begin{array}{c}
\text { celebrate + IND;PRS;NOM(1,PL);NEG;ACC(3,SG,MASC) } \\
\text { cjuexua te + IND;PRS;NOM(1,PL)NEG;ACC(3,SG,MASC) } \\
\text { Example of Hallucinated Data (English) }
\end{array} \rightarrow \text { we don't celebrate him } \\
\text { we don't cjuexuate him. } \\
\text { cevap vermek + NEC;PST;NOM(3,SG);NEG;Q;DAT(3,PL) } \rightarrow \text { onlara cevap vermemeli miydi? } \\
\text { cevCp vDOme k + NEC;PST;NOM(3,SG);NEG;Q;DAT(3,PL) } \\
\text { Example of Hallucinated Data (Turkish) }
\end{array}
$$

Shared-Task

Task2: Reinflection

- Task: Reinflection

I will give him to her

- Metric: Edit Distance (ED)
- Method: Vanilla Transformer [1]
- Tricks: Batch Size 400 [2], layer normalization before self-attention and feed-forward layers [2]. We didn't use the input clause features.

System	Reinflection
Transformer Baseline	4.642
mT5 Baseline	2.826
KUIS AI	$\mathbf{0 . 7 0 5}$
Figure: Task2 Averaged Results	

Shared-Task

Task3: Analysis

- Task: Analysis

I will give him to her \longrightarrow give + IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

- Metric: F1 Score
- Method: mGPT-based prefix tuning [1], [2]

Figure: Prefix Tuning example for Task3
[1] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.

Number of Tokens:

- Eng: ~52B
- Deu: ~50B
- Spa: ~30B
- Heb: ~0.69B

Submitted Detailed Results Table

Task3: Analysis

Model	Transformer + D.A.		Transformer			Prefix Tuning			
Metrics	$\mathrm{F} 1 \uparrow$	$\mathrm{EM} \uparrow$	$\mathrm{ED} \downarrow$	$\mathrm{F} 1 \uparrow$	$\mathrm{EM} \uparrow$	$\mathrm{ED} \downarrow$	$\mathrm{F} 1 \uparrow$	$\mathrm{EM} \uparrow$	$\mathrm{ED} \downarrow$
Deu	97.71	91.80	0.241	92.40	66.50	0.788	95.89	83.40	0.991
Eng	98.02	88.90	0.221	95.42	72.30	0.477	99.61	98.50	0.064
Fra	98.59	93.20	0.124	92.64	68.30	0.758	95.63	81.90	0.933
Heb	97.73	89.80	0.550	94.00	83.30	0.796	92.84	73.50	1.322
Heb-Unvoc	97.96	94.20	0.113	86.70	57.70	1.002	82.09	36.20	2.044
Rus	97.57	87.70	0.828	97.29	84.90	0.854	97.51	88.60	3.252
Swa	99.72	99.61	0.019	92.05	84.47	0.182	90.51	62.63	3.114
Spa	98.79	92.00	0.199	96.42	77.60	0.480	98.11	89.40	0.560
Tur	97.50	89.80	0.333	95.36	84.70	0.593	95.36	84.70	0.593
Average	98.18	91.89	$\mathbf{0 . 2 9 2}$	93.14	74.72	$\mathbf{0 . 7 0 5}$	$\mathbf{9 4 . 1 7}$	77.65	1.430

Conclusion

Summary and Future Work

- Summary

- No single method achieves best results in all tasks.
- Recent NLG methods provide promising results on morphological tasks.
- Data hallucination, multilingual models, and lightweight tuning methods are the game changers.

- Future work

- Prefix-Tuning in all types of architectures (autoencoding, autoregressive, seq2seq).
- Hallucination for reinflection and analysis tasks.
- Github Code: https://github.com/emrecanacikgoz/mrl2022

Q/A for 5 min. ?

Appendix

Transformer Architecture

Figure1: Our Vanilla Transformer Architecture

Appendix
 Prefix-Tuning

Prefix	Source Input
$\Gamma_{\text {P1, P2 }}$	Target

[Prefix; x; y]
Figure: Auto-regressive Prefix-Tuning set-up

Appendix mGPT Language Corpus

Afrikaans, Azerbaijani, Belarusian, Bengali, Chuvash, German, English, Basque, Finnish, Hebrew (modern), Hungarian, Indonesian, Japanese, Kazakh, Kirghiz, Kyrgyz, Latvian, Mongolian, Malay, Dutch, Polish, Romanian, Moldavan, Yakut, Swahili, Telugu, Thai, Turkish, Tuvinian, Urdu, Vietnamese, Yoruba, Arabic, Bashkir, Bulgarian, Buriat, Danish, Greek, Modern, Spanish; Castilian, Persian, French, Hindi, Armenian, Italian, Georgian, Korean, Lithuanian, Malayalam, Marathi, Burmese, Ossetian, Ossetic, Portuguese, Russian, Swedish, Tamil, Tajik, Turkmen, Tatar, Ukrainian, Uzbek, Kalmyk, Chinese

Figure: 60 different languages

Appendix
 mGPT Language Corpus

Figure: 60 different language statistics

Appendix

Extra Results

Inflection	Deu		Eng			Fra			Heb			Rus		
Models	EM	ED												
	80.8%	0.645	92.1%	0.129	92.4%	0.270	92.5%	0.488	92.8%	0.763	95.2%	0.083		
$\mathrm{~T}+\mathrm{H}(\mathrm{N}=1000)$	89.8%	0.467	96.6%	0.132	94.0%	0.273	93.6%	0.289	93.6%	0.709	$\mathbf{9 9 . 4 \%}$	$\mathbf{0 . 0 1 0}$		
$\mathrm{~T}+\mathrm{H}(\mathrm{N}=5000)$	$\mathbf{9 2 . 0 \%}$	$\mathbf{0 . 4 2 2}$	$\mathbf{9 7 . 0 \%}$	$\mathbf{0 . 1 1 3}$	$\mathbf{9 5 . 3 \%}$	$\mathbf{0 . 1 2 1}$	$\mathbf{9 6 . 0 \%}$	$\mathbf{0 . 1 1 2}$	$\mathbf{9 3 . 8 \%}$	0.907	99.3%	0.018		
$\mathrm{~T}+\mathrm{H}(\mathrm{N}=10000)$	89.7%	0.474	96.8%	0.130	94.6%	0.159	95.2%	0.181	$\mathbf{9 3 . 7 \%}$	$\mathbf{0 . 8 9 9}$	$\mathbf{9 8 . 7 \%}$	0.270		

Figure 1: Results for varying number of hallucinated data for Task1

Eng		
Models	EM	ED
GPT-2	$83.5 \% \pm 0.007$	0.660 ± 0.026
T5	$90.4 \% \pm 0.016$	0.316 ± 0.073
mGPT	$93.8 \% \pm 0.011$	0.121 ± 0.070

Figure 2: Results for monolingual vs. multilingual for Task1

